	COMMON PRE-BOARD EXAMINATION: 2022-23 Class-XII Subject: MATHEMATICS (041) Date: 12/01/2023 Time: 3 hours M.M.: 80
	General Instructions : 1. This Question paper contains - five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions. 2. Section A has 18 MCQ's and $\mathbf{0 2}$ Assertion-Reason based questions of 1 mark each. 3. Section B has 5 Very Short Answer (VSA)-a type question of $\mathbf{2}$ marks each. 4. Section C has 6 Short Answer (SA)-a type question of $\mathbf{3}$ marks each. 5. Section D has 4 Long Answer (LA)-a type question of $\mathbf{5}$ marks each. 6. Section \mathbf{E} has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.
	SECTION A (Multiple Choice Questions) Each question carries 1 mark
1.	If $\tan ^{-1} x=\pi / 3$ for some $x \in R$, then the value of $\cot ^{-1} x$ is (a) $\pi / 3$ (b) $\pi / 6$ (c) $-\pi / 3$ (d) $-\pi / 6$
2.	The maximum number of equivalence relations on the set $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ are (a) 1 (b) 2 (c) 3 (d) 5
3.	If A is a square matrix of order $3,\left\|A^{\prime}\right\|=-4$, then $\left\|A A^{\prime}\right\|=$ (a) 16 (b) -16 (c) 4 (d) -4
4.	If $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, then A^{2} equals to (a) $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ (b) $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ (c) $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ (d) $\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$
5.	The matrix product $\left(\begin{array}{r}1 \\ -2 \\ 2\end{array}\right)\left(\begin{array}{lll}4 & 5 & 2\end{array}\right)\left(\begin{array}{r}2 \\ -3 \\ 5\end{array}\right)$ equals to: (a) $\left(\begin{array}{r}3 \\ -6 \\ 9\end{array}\right)$ (b) $\left(\begin{array}{l}3 \\ 9 \\ 6\end{array}\right)$ (c) $\left(\begin{array}{r}3 \\ 6 \\ -9\end{array}\right)$ (d) None of these
6.	The value of $\|\operatorname{adj} \mathrm{A}\|$ if $\mathrm{A}=\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$ is: (a) -2 (b) 1 (c) -1 (d) 2
7.	The value of k if $\left\|\begin{array}{rrr}1 & k & 3 \\ 3 & k & -2 \\ 2 & 3 & 2\end{array}\right\|=-33$, is: (a) -1 (b) $\frac{5}{7}$ (c) $\frac{22}{7}$ (d) $\frac{33}{7}$
8.	The function $f(x)=\left\{\begin{array}{ll}\frac{\sin x}{x}+\cos x & , \text { if } x \neq 0 \\ k & , \text { if } x=0\end{array}\right.$ is continuous at $x=0$, then the value of k is

	a) 0 b) 2 c) 1 d) 1.5
9.	If $y=\tan ^{-1}\left(\frac{\cos x+\sin x}{\cos x-\sin x}\right)$, then $\frac{d y}{d x}$ is : (a) 1 (b) -1 (c) $1 / 2$ (d) $-1 / 2$
10.	The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{17} x d x$ (a) 1 (b) 0 (c) -1 (d) π
11.	The value of $\int \sec ^{2}(1-x) d x$ (a) $-\tan (1-x)+C$ (b) $\tan (1-x)+C$ (c) $-\sec (1-x)+C$ (d) None of these
12.	The integrating factor for the given differential equation is $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=\frac{1}{\left(1+x^{2}\right)}$ (a) $\log \left(1+x^{2}\right)$ (b) $1+x^{2}$ (c) 2 x (d) $\tan ^{-1}(x)$
13.	The order of differential equation $\frac{d^{4} y}{d x^{4}}+\sin \left(\frac{d^{2} y}{d x^{2}}\right)=0$ is : (a) 2 (b) 4 (c) 6 (d) not defined
14.	If $\vec{a}=3 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}-3 \hat{k}$, then the value of $\vec{a} \cdot \vec{b}$ is: (a) 3 (b) -3 (c) 4 (d) None of these
15.	The direction cosines of the line joining $(2,-4,5)$ and $(0,-6,4)$ are: (a) $2,2,1$ (b) $-2,-2,-1$ (c) $2 / 3,2 / 3,1 / 3$ (d) None of these
16.	If A and B are two events such that $P(A) \neq 0$ and $P(B / A)=1$, then (a) $\mathrm{A} \subseteq \mathrm{B}$ (b) $\mathrm{B} \subseteq \mathrm{A}$ (c) $\mathrm{B} \neq \phi$ (d) $\mathrm{A}=\phi$
17.	The corner points of the shaded unbounded feasible region of an LPP are $\mathrm{A}(0,4), \mathrm{B}(0.6,1.6)$ and $\mathrm{C}(3,0)$ as shown in the figure. The minimum value of the objective function $Z=4 x+6 y$ occurs at (a) $(0.6,1.6)$ only (b) $(3,0)$ only (c) $(0.6,1.6)$ and $(3,0)$ only (d) at every point of the line-segment joining the points $(0.6,1.6)$ and $(3,0)$
18.	Given two independent events A and B such that $\mathrm{P}(\mathrm{A})=0.3, \mathrm{P}(\mathrm{B})=0.6$ and $\mathrm{P}\left(A^{\prime} \cap B^{\prime}\right)$ is (a) 0.9 (b) 0.18 (c) 0.28 (d) 0.1
	ASSERTION-REASON BASED QUESTIONS In the following questions, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices. (a) Both A and R are true and R is the correct explanation of A . (b) Both A and R are true but R is not the correct explanation of A .

	(c) A is true but R is false. (d) A is false but R is true.								
19.	Assertion (A):-If A and B are symmetric matrices of same order then AB-BA is also a symmetric matrix,, Reason(R):Any square matrix A is said to be skew symmetric matrix if $A=-A^{\prime}$, where A ' is the transpose of matrix A.								
20.	Assertion (A): $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}$ is an increasing function, $\forall x \in R$ Reason (\mathbf{R}): If $\mathrm{f}^{\prime}(\mathrm{x}) \leq 0$, then $\mathrm{f}(\mathrm{x})$ is an increasing function.								
	SECTION B This section comprises of very short answer type-questions (VSA) of 2 marks each								
21.	b) Find the value of $\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)$. OR Let $A=R-\{3\}$ and $B=R-\{1\} \mathrm{f}: \mathrm{A} \rightarrow B$ be defined as $\mathrm{f}(x)=\frac{x-2}{x-3} \forall \mathrm{x} \in \mathrm{A}$, Then show that f is bijective								
22.	An edge of a variable cube is increasing at the rate of $3 \mathrm{~cm} / \mathrm{sec}$. How is the volume of the cube increasing when the edge is 10 cm long?								
23.	Show that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$								
24.	Find λ when scalar projection of $\vec{a}=\lambda \hat{\imath}+\hat{\jmath}+4 \hat{k}$ on $\vec{b}=2 \hat{\imath}+6 \hat{\jmath}+3 \hat{k}$ is 4 units OR Find the vector and Cartesian equations of the line through the point $(5,2,4)$ and which is parallel to the vector $3 \hat{\imath}+2 \hat{\jmath}-8 \hat{k}$.								
25.	Find $\frac{d y}{d x}$, if $\mathrm{x}=\mathrm{a}(1-\cos \theta)$ and $\mathrm{y}=\mathrm{a}(\theta-\sin \theta)$.								
	SECTION C(This section comprises of short answer type questions (SA) of 3 marks each)								
26.	Evaluate: $\int \frac{1}{\sqrt{8+3 x-x^{2}}} d x$								
27.	The probability of two students A and B coming to school on time are $\frac{3}{7}$ and $\frac{5}{7}$ respectively. Assuming that the events (A coming on time and B coming on time are independent), find the probability of only one of them coming to school on time. OR A random variable has following probability distribution:								
	X	0	1	2	3	4	5	6	7
	$\mathrm{P}(\mathrm{X})$	0	k	$2 k$	$2 k$	$3 k$	k^{2}	$2 k^{2}$	$7 k^{2}+k$
	Determine: (i) k (ii) $P(X<3)$ (ii) $P(X>6)$								
28.	Evaluate: $\int \frac{x}{(x-1)^{2}(x+2)} d x$								
29.	Solve the differential equation $\left(\tan ^{-1} y-x\right) d y=\left(1+y^{2}\right) d x$ OR Solve the differential equation $x \cos \left(\frac{y}{x}\right) \frac{d y}{d x}=y \cos \left(\frac{y}{x}\right)+\mathrm{x}$.								

30. Solve the following Linear Programming Problem graphically:

Maximise $\mathrm{Z}=3 \mathrm{x}+9 \mathrm{y}$ subject to $x+3 y \leq 60 ; \quad x+\mathrm{y} \geq 10 ; \mathrm{x} \leq \mathrm{y} ; \quad x \geq 0, y \geq 0$

31.	Evaluate $\mathrm{I}=\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x} d x$.
	Evaluate $\mathrm{I}=\int_{0}^{\pi / 2}(\sqrt{\tan x}+\sqrt{\cot x}) d x$.

SECTION D

(This section comprises of long answer-type questions (LA) of 5 marks each)
32. Using integration, find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the straight line. $\frac{x}{3}+\frac{y}{2}=1$
33. Define the relation R in the set $N \times N$ as follows:

For (a, b), (c, d) $\in N \times N$, (a, b) $\mathrm{R}(\mathrm{c}, \mathrm{d})$ iff $\mathrm{ad}=\mathrm{bc}$. Prove that R is an equivalence relation in $N \times N$. OR
For real numbers x and y, we write $x R y$, implying that $x-y+\sqrt{2}$ is an irrational number. Then, check relation R is reflexive, symmetric, or transitive?
34. Find the foot of perpendicular from the point $(2,3,-8)$ to the line $\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$ Also, find the perpendicular distance from the point to the line.

OR

Find the shortest distance between the lines

$$
\begin{aligned}
& \vec{r}=(1-t) \hat{\imath}+(t-2) \hat{\jmath}+(3-2 t) \hat{k} \\
& \vec{r}=(1+s) \hat{\imath}+(2 s-1) \hat{\jmath}-(2 s+1) \hat{k}
\end{aligned}
$$

35.

If $A=\left[\begin{array}{ccr}1 & 2 & -3 \\ 2 & 3 & 2 \\ 3 & -3 & -4\end{array}\right]$ find A^{-1}.
Hence solve the equation $x+2 y-3 z=-4 ; \quad 2 x+3 y+2 z=2 ; \quad 3 x-3 y-4 z=11$.

SECTION E

(This section comprises of 3 case-study/passage-based questions of 4 marks each with two sub-parts. First two case study questions have three sub-parts (i), (ii), (iii)of marks 1, 1, 2 respectively. The third case study question has two sub-parts of 2 marks each.)
36. Case-Study 1: Read the following passage and answer the questions given below.

The temperature of a person during an intestinal illness is given by
$\mathrm{f}(x)=3 \mathrm{x}^{4}+4 \mathrm{x}^{3}-12 \mathrm{x}^{2}+12, \quad-3 \leq x \leq 3$, where $\mathrm{f}(\mathrm{x})$ is the temperature in ${ }^{\circ} \mathrm{F}$ at x days.
(i) Is the function differentiable in the interval $(-3,3)$? Justify your answer.
(ii) Find the critical points.
(iii) Find the intervals in which the function is strictly increasing,
(iii) Find the absolute maximum/absolute minimum values of the function in the interval [-3,3].
37.

Case-Study 2: Read the following passage and answer the questions given below.
An Apache helicopter of the enemy is flying along the curve given by $y=x^{2}+7$. A soldier, placed at $(3,7)$ want toshoot down the helicopter when it is nearest to him.

(i) If $\mathrm{P}(\mathrm{x} 1, \mathrm{y} 1)$ be the position of a helicopter on curve $\mathrm{y}=\mathrm{x}^{2}+7$, then find distance D from P to soldier place at $(3,7)$.
(ii) Find the critical point such that distance is minimum.
(iii) Verify by second derivative test that distance is minimum at $(1,8)$.

OR
(iii) Find the minimum distance between soldier and helicopter?
38. Case-Study 3 Read the following passage and answer the questions given below.

A Covid-19 test is 99% effective in detecting Coronavirus disease when it is in fact, present. However, the test also yields a false positive result for 0.5% of the healthy person tested (i.e., if a healthy person is tested, then, with probability 0.005 , the test will imply he has the Coronavirus disease). If 0.1 percent of the population actually has the Coronavirus disease.
(i) What is the total probability that a person selected from this population will be tested positive?
(ii) What is the probability that a person has the Coronavirus disease given that his test result is positive?

